Новости Электротехники 1(115) 2019





<  Предыдущая  ]  [  Следующая  >
Журнал №6(6) 2000

ТРЕБОВАНИЯ К БЕЗОПАСНОСТИ ЭЛЕКТРИЧЕСКИХ УСТАНОВОК


В. Павлов, доцент
Электротехнический Университет, г. С.-Петербург


Безопасность является одним из важных факторов, оказывающих влияние на стоимость проектирования и эксплуатации электроустановок. Если не принимать мер для обеспечения безопасности персонала, то расходы на компенсацию ущерба для здоровья многократно превысят расходы на разработку и применение средств защиты. Кроме того, данное производство может быть закрыто решением органов надзора, а репутация разработчика и производителя - подорвана.
По данным Международной Организации Труда ежегодно в мире более чем 120 миллионов людей получают травмы. Если не учитывать природные катастрофы и аварии на транспорте, то примерно 7-13% смертельных случаев вызвано причинами, связанными с электричеством (рис. 1). С учетом все более широкого применения электроэнергии во всех областях человеческой деятельности можно ожидать увеличения количества несчастных случаев по этим причинам.
Суммарная стоимость потерь в мире от производственных повреждений (результат действия электрического тока) превышает 21 миллиард долларов США. И еще почти 38 миллиардов долларов теряется в результате пожаров, возникающих в электрических сетях. Это составляет почти 2% от суммарных затрат на развитие производства и новые разработки. Можно считать, что вложения в разработку систем, гарантирующих электропожаробезопасность, целесообразны, если их сумма эквивалентна сумме потерь от неблагоприятного действия электрического тока.

Государственные организации многих стран разрабатывают правила безопасности для электрического оборудования и систем. Россия разработала такие правила одной из первых. Имеющиеся отличия их от европейских в настоящее время устраняются для преодоления трудностей в использовании или продаже технологического оборудования. Но некоторые хорошо зарекомендовавшие себя российские стандарты, содержащие более жесткие, по сравнению с европейскими, нормы, будут сохранены без изменений.


Системы защиты должны гарантировать безопасность оборудования для людей, при этом выбор конкретной технической реализации защиты должен быть технически эффективен и экономически оправдан.
Обеспечение безопасности электротехнологического оборудования может быть достигнуто путем исключения воздействия опасных и вредных факторов на персонал, занятый обслуживанием, эксплуатацией или ремонтом этого оборудования или иных установок, расположенных в зоне манипуляций человека. К числу указанных воздействий относятся рассматриваемые ниже собственно электрический ток и создаваемые при выработке, преобразовании и потреблении технологическим оборудованием электроэнергии электрическое и магнитное поля, а также термические поля, шум, ультразвук и вибрации. Кроме того, на человека могут воздействовать ультрафиолетовое, лазерное и ионизирующее излучения, он может быть поражен опасными факторами пожара или взрыва, может подвергаться действию вредных загрязнений воздуха рабочей зоны и т.п.

Безопасность электрических установок и систем

Допустимое воздействие электрического тока на человека нормируется ГОСТ 12.1.038-82 и рекомендациями МЭК (публикация МЭК 479, 1974 г.), ряд положений которых жестче, чем предписывают ныне действующие в России нормы.
Зависимость предельно допустимого тока, протекающего через тело человека, от частоты в соответствии с публикацией МЭК (IEC) № 479-2.4 приведена в табл. 1 и на рис. 2.
При расчетах необходимо помнить, что сопротивление тела человека не является линейной величиной и зависит от многих факторов: состояния кожи, напряжения прикосновения,индивидуальных свойств человека и т.д. Зависимость среднестатистического значения сопротивления от напряжения между двумя руками для 95% и 5% населения и дополнительное сопротивление пола приведены в табл. 2 и табл. 3.
В приближённых расчётах Rh принимают равным 1 кОм.
Контакт человека с частями оборудования, находящимися под напряжением, возможен несколькими способами: двухфазный, когда человек касается различными точками тела металлических частей, находящихся под разными потенциалами; однофазный (однополюсный), когда человек касается только одной металлической части, находящейся в контакте с источником напряжения, а другая часть его тела контактирует с землей или нетоковедущей частью, связанной с источником напряжения паразитными токами утечки; опосредованный, когда человек попадает под действие токов утечки, не вступая в контакт с токоведущими частями (например, шаговое напряжение или межконтактная разность потенциалов). Возможен случай поражения человека током под действием накопившихся зарядов (например, наведенный заряд статического электричества или остаточный заряд на реактивных элементах цепи).
Безопасность достигается недоступностью токоведущих частей, применением надлежащей изоляции и использованием технических защитных мероприятий, которые делятся на основные и дополнительные.
Выбор конкретных средств защиты осуществляется на основании классификации электроустановок по параметрам используемых в них напряжений питания, а производственных помещений - по степени опасности поражения электрическим током.
Электроустановки по величине напряжения питания разделяются на установки напряжением до 1000 В и напряжением свыше 1000 В (Правила устройства электроустановок - далее ПУЭ). При этом первая группа электроустановок применительно к устройствам высокочастотного нагрева, в свою очередь, делится на оборудование I диапазона (с номинальным напряжением до 50 В переменного тока или 120 В постоянного тока) и оборудование II диапазона (выше 50 В переменного тока или 120 В постоянного тока, но ниже 1000 В переменного тока и 1500 В постоянного тока). Оборудование напряжением свыше 1000 В имеет номинальное напряжение выше указанного для диапазона II первой группы классификации. По частоте питающей сети различают оборудование постоянного тока, оборудование низкой (промышленной) частоты (с рабочей частотой до 60 Гц включительно), среднечастотное оборудование - выше 60 Гц и до 10 кГц включительно, высокочастотное оборудование - выше 10 кГц и до 300 МГц включительно, сверхвысокочастотное оборудование, рабочая частота которого превышает 300 МГц. Классификация дается в соответствии с ГОСТ Р 50014.1-92. «Безопасность электротермического оборудования. Часть 1. Общие требования».
Питание электротехнологического оборудования осуществляется от одного из следующих видов сетей: однофазных двух- и трехпроводных, двухфазных трехпроводных и пятипроводных, трехфазных трехпроводных, четырехпроводных и пятипроводных, обозначаемых в соответствии с международной системой классификации сетей как TN-S, TN-C, TN-C-S, TT, IT, где первая буква характеризует способ заземления источника питания (T - непосредственное присоединение одной точки токоведущих частей к земле, I - токоведущие части изолированы от земли или связаны с ней через сопротивление), а вторая буква характеризует способ заземления нетоковедущих частей электроустановки (T - непосредственная связь с землей нетоковедущих частей независимо от характера связи источника питания с землей, N - связь с землей через точку заземления источника). Последующие буквы (там, где они есть) характеризуют вид нулевого проводника. Он либо объединяет функции рабочего и защитного (С или «PEN» - проводник), либо эти функции обеспечиваются раздельными проводниками (S). Пока в России наибольшее распространение получили питающие сети по типу TN, TN - S, TN - C или IT (рис. 3).
Для оценки опасности поражения необходимо принимать во внимание не только уровень напряжения и частоту питающей сети, но и конкретные условия работы или отдыха. По степени опасности поражения человека электрическим током различают помещения без повышенной опасности, помещения с повышенной опасностью поражения электрическим током и особоопасные помещения (ПУЭ, 1.1.13).
Электротермическое оборудование, как правило, размещается в помещениях с повышенной опасностью поражения электрическим током, а часто и в особоопасных помещениях. В этих условиях для человека представляет опасность не только двухфазное (двухполюсное) прикосновение к токоведущим частям, но и однополюсное прикосновение к токоведущим частям или корпусам электрооборудования. Усугубляет ситуацию возможность попадания персонала под действие наведенного заряда, заряда статического электричества или под действие индуктированных токов. В случае замыкания токоведущих частей на землю или на корпус изделия при некорректном исполнении заземления человек может подвергнуться действию шагового напряжения.


Обеспечение недоступности токоведущих частей.

Основой безопасной эксплуатации является обеспечение недоступности токоведущих частей оборудования для прикосновения человека (или для замыкания их посторонними предметами). Надежная конструкция корпуса (оболочки) - основное средство обеспечения недоступности токоведущих частей. Оболочка должна соединяться с основными частями установки в единую конструкцию, закрывать опасную зону и сниматься только при помощи инструмента. Электрооборудование классифицируется в соответствии с типом защиты от электрического тока, степенью защиты от проникновения пыли, твердых объектов и влаги. Согласно ГОСТ 14254-80 и рекомендациям МЭК (IEC) 529 различают 7 степеней защиты от возможности доступа к внутренним частям изделия, а также 9 степеней защиты токоведущих частей от проникновения воды через корпус изделия. В зависимости от предполагаемых условий эксплуатации разработчик должен выбрать номер международной классификации по степени защиты корпусом (IP-хх).
Оболочки (корпуса) предназначены также для защиты от механического повреждения изоляционных материалов (абразивный износ, разрывы, растяжение и скручивание) и от поражения человека движущимися частями оборудования. Защитными оболочками должны оснащаться кабели для защиты от разрывов или повреждений при скручивании. Материалы защитных оболочек должны выбираться в соответствии с требованиями по механической прочности, стойкости к воздействиям агрессивной среды и по способности защищать оборудование от электромагнитных полей. Для оборудования во взрывоопасных зонах оболочки должны предохранять рабочую зону от взрыва, и требования к ним в таких зонах определяются более жесткими нормами искробезопасности - по ГОСТ 12.1.018 и ГОСТ 12.1.044.
К дополнительным средствам защиты относятся: сигнализация, применение блокировок и маркировки изделий. Блокировка предотвращает ошибочные действия оператора и исключает возможность доступа к токоведущим частям, находящимся под напряжением. Принцип действия блокировки заключается в том, что любое открытие крышек или снятие кожухов сопровождается разрывом электрической цепи и автоматическим отсоединением защищаемого изделия от источника напряжения. В других случаях блокировка делает возможным снятие кожуха или открывание дверцы лишь после предварительного снятия напряжения питания. Различают электрические, механические и электромагнитные блокировки. В электротермических установках для исключения случаев прикосновения персонала к токоведущим частям рекомендуется использование блокировок, исключающих возможность открывания шкафов и дверей камер без снятия питающего напряжения.
Сигнализация, окраска и маркировка служат для предупреждения персонала о состоянии электроустановки и ее потенциальной опасности. Сигнализация (обычно автоматическая), надписи и таблички применяются для указания на включенное состояние той или иной части установки, наличие напряжения, режим работы, запрет доступа внутрь оболочек без принятия соответствующих мер и т.п.





Очередной номер | Архив | Вопрос-Ответ | Гостевая книга
Подписка | О журнале | Нормы. Стандарты | Проекты. Методики | Форум | Выставки
Тендеры | Книги, CD, сайты | Исследования рынка | Приложение Вопрос-Ответ | Карта сайта




Rambler's Top100 Rambler's Top100

© ЗАО "Новости Электротехники"
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Segmenta Media создание и поддержка сайта 2001-2019