Новости Электротехники 2(128)-3(129) 2021





<  Предыдущая  ]  [  Следующая  >
Журнал №1(13) 2002

Как правильно измерить сопротивление изоляции электроустановок



Евгений Иванов, сопредседатель проблемного комитета «Электробезопасность» Международной академии наук экологии и безопасности жизнедеятельности, д. т. н., профессор кафедры безопасности жизнедеятельности СПГЭТУ «ЛЭТИ»,Анатолий Дьячков, инженер-электрик

Физическая природа сопротивления изоляции электротехнических изделий и электроустановок была раскрыта в статье «Электроустановкам необходимо обеспечить электробезопасность» («Новости электротехники» № 4/10).Теперь рассмотрим методы измерения сопротивления изоляции.

Сопротивления изоляции распределены по сети. Обычно оперируют значениями эквивалентных величин. Вследствие этого линии связи между токоведущими частями и корпусом, показанные в упомянутой статье на схемах замещения (рис. 2), и соответствующие им подключения элементов к фазам (полюсам) сети и земле в природе отсутствуют. Поэтому измерить значение сопротивления изоляции непосредственным подключением какого-либо прибора к схемным линиям связи не представляется возможным. По этой причине обычно используют косвенные методы измерений - активные (с применением вспомогательного источника напряжения) или пассивные (с использованием рабочего напряжения сети в качестве оперативного напряжения).
В сетях с заземленной нейтралью выполняют периодический контроль при снятом рабочем напряжении, а в сетях, изолированных от земли, согласно п. 1.6.12 Правил устройства электроустановок - автоматический контроль под рабочим напряжением.
Представление о значении сопротивления изоляции дает лишь сила тока в измерительной цепи в установившемся режиме, так как в первые моменты после приложения измерительного напряжения, а также при каждом изменении структуры и состава сети (например, при подключении новых электроприемников) в измерительной цепи протекают токи переходных режимов, обусловленные перезарядом емкости полюсов сети относительно корпуса или зарядом емкости подключаемого участка сети. Кроме того, на результат измерений оказывает влияние рабочее напряжение электроустановки.
Правильный результат может быть получен лишь при соответствии принятого метода измерений параметрам контролируемой сети. Без соблюдения этого условия в одной и той же сети при измерении различными средствами могут быть получены данные, противоречащие одни другим.

Измерения при снятом рабочем напряжении
При снятом рабочем напряжении применяют метод наложения постоянного напряжения. Измерительный прибор - переносной либо щитовой мегаомметр И- содержит источник постоянного напряжения Е и миллиамперметр А (рис. 1).

Рис. 1. Измерение при снятом рабочем напряжении

Один полюс прибора (обычно положительный) подключается к токоведущей части (например, к клемме 1), а второй полюс - к корпусу проверяемого электротехнического изделия.
В установившемся режиме после заряда емкостей С1 и С2 относительно корпуса ток Iизм, протекающий под действием источника Е, на полюсе 1 разветвляется: его часть I’изм протекает через эквивалентное сопротивление изоляции R1 полюса 1, а другая часть I’’изм – через сопротивление нагрузки RН и эквивалентное сопротивление изоляции R2 полюса 2. Далее ток протекает по корпусу и суммируется в цепи миллиамперметра А.
Силу тока Iизм определяет выражение:

Iизм=E/(Rвн+R)

(1)


где Rвн – внутреннее сопротивление мегаомметра (миллиамперметра, источника измерительного напряжения и добавочного сопротивления Rд), R – эквивалентное сопротивление изоляции. Строго говоря, в последнем следовало бы учесть сопротивление Rн, но обычно Rн << R2 поэтому его влиянием допустимо пренебрегать (в тех случаях, когда внутреннее сопротивление контролируемого изделия соизмеримо с величиной сопротивления изоляции, такое допущение может приводить к ошибочным результатам, завышенным против фактических).
При Rвн = const и Е = const сила тока в измерительной цепи зависит только от величины R, поэтому миллиамперметр градуируют непосредственно в единицах сопротивления.
На практике обычно применяют переносные мегаомметры с питанием от сети переменного тока (типа Ml27) или с автономным источником (типа М4100). В качестве последнего используют индукторный генератор с ручным приводом (скорость вращения рукоятки около 2 об/с). Чтобы уменьшить погрешность измерений из-за непостоянства скорости вращения рукоятки, в таких мегаомметрах в качестве измерительного прибора используют не миллиамперметр, а логометр, одна рамка которого подключена непосредственно к источнику напряжения, а вторая, жестко связанная с ней, включена в измерительную цепь.
Для повышения достоверности измерений измерительное напряжение выбирают близким к рабочему напряжению контролируемой цепи. Для электрооборудования напряжением от 100 В до 400 В применяют мегаомметры напряжением 500 В. Безопасность измерений при этом достигается за счет ограничения силы тока в измерительной цепи до величины 1 мА добавочным сопротивлением Rд = 0,5 МОм.

Измерения в сетях постоянного тока
Норвежская фирма Autronica создала автоматизированную систему контроля сопротивления изоляции System AJ-1 с генератором оперативного напряжения частотой 5 Гц. Фирма Merlin Gerin (Франция) выпускает приборы Vigilohm System XM-200 с оперативным источником частотой 2,5 Гц.
В ряде случаев вместо источника напряжения непромышленной частоты используют вспомогательный источник постоянного напряжения переменной полярности. Так, фирма Bender (Германия), выпускает прибор IRDH 265-4.

Метод уравновешенного моста.

Рис. 2. Измерение сопротивления
изоляции сети постоянного
тока методом уравновешенного
моста.

На этом методе, как правило, основана работа отечественных щитовых мегаомметров в сетях постоянного тока. Схема измерений этим методом приведена на рис. 2, где использованы следующие обозначения: А - миллиамперметр; Rд – добавочное сопротивление; П – переключатель; Е – источник измерительного напряжения (до 150 В); Rп- потенциометр. Плечами моста являются сопротивления изоляции R1 и R2 и сопротивления r1 и r2 плеч потенциометра Rп. Измерительный прибор и ограничительное сопротивление Rд включены в диагональ моста.

Сила тока Iизм в диагонали моста определяется выражением:

(2)

где R – эквивалентное сопротивление изоляции сети.
Измерение производится в два этапа. На первом этапе переключатель П устанавливают в положение 1 и перемещением движка потенциометра балансируют мост – добиваются отсутствия тока в диагонали моста. На втором этапе переключатель устанавливают в положение 2, подключая в диагональ моста источник измерительного напряжения Е. После окончания процессов перезаряда емкостей снимают показание миллиамперметра. В сбалансированном мосте составляющая тока, определяемая вторым слагаемым, отсутствует. Поэтому при Е = const, Rд = const и при условии r1r2/Rп << R сила тока Iизм однозначно определяется сопротивлением изоляции R (приборы типа Ml54, M1508, M1608, M1428, M1628).
Обычно при работе с сетями постоянного тока применяют методы измерений, основанные на использовании рабочего напряжения сети в качестве оперативного напряжения. Рассмотрим один из них.

Метод трех отсчетов вольтметра.

Этот метод заключается в последовательном измерении вольтметром с известным сопротивлением r трех напряжений: U – рабочего; U1 – между положительным полюсом сети и землей; U2 – между отрицательным полюсом и землей. Расчет искомой величины сопротивления изоляции сети производится по формуле:

(3)


Рассмотрим физические основания этого метода.

Рис.3. Измерение сопротивления изоляции
сети постоянного тока вольтметрами:
а) – по методу двух вольтметров;
б) и в) – по методу трех отсчетов вольтметра.


На рис. 3,а показана эквивалентная схема сети постоянного тока с сопротивлениями изоляции полюсов R1, R2 и рабочим напряжением U. Напряжения между полюсами сети и корпусом U’ и U’, пропорциональны соответствующим сопротивлениям изоляции, то есть всегда выполняются следующие соотношения:

Если для измерения этих напряжений между полюсами сети и корпусом включить вольтметры V1 и V2 c равными внутренними сопротивлениями r, то получим:

(4)


При r>>R выражение (4) будет совпадать с предыдущим.
Такой способ контроля (с использованием двух вольтметров) ранее применялся для индикации однополюсных снижений сопротивления изоляции и однополюсных замыканий на землю. Вольтметр, соответствующий полюсу с меньшим сопротивлением изоляции, имеет меньшее показание (зачастую вместо вольтметров включали две лампы накаливания).
Пользуясь результатами измерения напряжений U’ и U’’, определить величины сопротивлений R1 и R2, соответственно и значение эквивалентного сопротивления изоляции сети R, не представляется возможным, так как система уравнений (4) неполная: эквивалентная схема состоит из трех контуров, в то время как сама система содержит только два уравнения. Чтобы ее все-таки можно было разрешить, в сеть вносят нормированные искажения.
При включении вольтметра V по схеме рис. 3,б меняется эквивалентное сопротивление между положительным полюсом сети и землей (за счет шунтирования сопротивления изоляции R1 внутренним сопротивлением вольтметра r). Оно становится равным:

Так как при этом сопротивление между отрицательным полюсом сети и корпусом не изменится, то уменьшается напряжение между положительным полюсом и землей: U1 < U’(соответственно U’2>U’’). При измерении по схеме рис. 3,в аналогично получаем: U2 < U’’. С условием того, что U’+U’’ =U, при измерении методом трех отсчетов всегда справедливо неравенство

U1+ U2 < U

Следует еще раз подчеркнуть, что оно образуется за счет намеренного поочередного уменьшения сопротивлений между полюсами сети и землей путем шунтирования сопротивлений изоляции R1 и R2 известным сопротивлением r.
Теперь система уравнений, составленных для напряжений U1 и U2, оказывается разрешимой, так как она содержит известные величины U, U1, U2, r и две неизвестные величины: R1 и R2. Решая систему относительно последних, получаем выражение (3) для эквивалентного сопротивления изоляции сети.
Соотношение величин напряжений U и U1+U2, определяющее точность измерений при данном сопротивлении изоляции сети, зависит от величины сопротивления вольтметра r. Если r>>R (например, при измерении ламповым, цифровым или электростатическим вольтметром), то при подключении вольтметра в сеть вносятся несущественные искажения, так как сопротивления между полюсами сети и землей практически не изменяются. Как следствие этого получаем U1+U2 =U. Соответственно нулевыми будут результаты при расчетах по формуле (3).
Наибольшая точность измерений достигается при выполнении следующего соотношения:
r =0,8R, при котором U1+U2= 0,44U. Обычно рекомендуется выбирать вольтметр с внутренним сопротивлением, приблизительно равным измеряемому сопротивлению изоляции.
Изложенное справедливо не только для силовых сетей, но и для низковольтных систем автоматики. В последних опасно выполнять контроль сопротивления изоляции с использованием щитовых мегаомметров, содержащих источник измерительного напряжения 100-150 В. Под действием этого источника при определенных условиях могут выйти из строя комплектующие систему полупроводниковые приборы и микросхемы.
Этот метод прост в выполнении и доступен, так как не требует применения специальной аппаратуры. Однако он имеет и ряд недостатков, связанных с необходимостью выполнения вычислений.
Опыт показывает, что целесообразна подмена расчетов по формуле (3) работой с соответствующими номограммами. В качестве примера на рис. 4 приведена номограмма, предназначенная для определения значения сопротивления изоляции сетей постоянного тока напряжением от 150 до 600 В.
Номограмма имеет три шкалы – рабочего напряжения U, суммы напряжений полюсов сети относительно корпуса U1+U2 и искомого значения сопротивления изоляции R. Порядок работы с номограммой таков: к точкам шкал U и U1+U2, соответствующим полученным результатам измерений, прикладывается линейка; искомое значение считывается по шкале R. В практической деятельности не всегда имеется в наличии вольтметр с предусмотренным номо-граммой значением внутреннего сопротивления. Поэтому на рис. 5 приведена номограмма, пригодная для работы с различными типами вольтметров. Она состоит из двух параллельных шкал (U1 + U2 и R) и бинарного поля с координатами «напряжение сети – внутреннее сопротивление вольтметра». Работа с такой номограммой также не составляет труда.

Продолжение в следующем номере: методы измерения в сетях переменного тока и двойного рода тока.


Рис. 4. Номограмма для определения сопротив ления изоляции сетей постоянного тока напряжением от 150 В до 600 В при измерении вольтметром с внутренним сопротивлением 100 кОм

Рис.5. Номограмма для определения сопротив ления изоляции сетей постоянного тока напряжением от 150 В до 600 В при измерении вольтметром с внутренним сопротивлением от 50 до 200 кОм




Очередной номер | Архив | Вопрос-Ответ | Гостевая книга
Подписка | О журнале | Нормы. Стандарты | Проекты. Методики | Форум | Выставки
Тендеры | Книги, CD, сайты | Исследования рынка | Приложение Вопрос-Ответ | Карта сайта




Rambler's Top100 Rambler's Top100

© ЗАО "Новости Электротехники"
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Segmenta Media создание и поддержка сайта 2001-2024