Новости Электротехники 2(128)-3(129) 2021





<  Предыдущая  ]  [  Следующая  >
Журнал №1(31) 2005
По мнению директора Института сверхпроводимости и физики твердого тела РНЦ «Курчатовский институт» Николая Алексеевича Черноплекова, сверхпроводниковые технологии в настоящее время в мире вышли на тот уровень, на котором с их использованием возможно создание нового поколения электроэнергетического оборудования, существенно превосходящего оборудование традиционного исполнения.
За счет более высокой эффективности, уменьшения в два-три раза массогабаритных показателей и соответственно материалоемкости и энергозатрат на изготовление, повышения надежности и срока службы оно будет удовлетворять требованиям электроэнергетики XXI столетия. Широкое применение сверхпроводникового электротехнического оборудования как при генерации электроэнергии, так и при ее транспортировке и потреблении позволит увеличить эффективность использования электроэнергии на 5–7%. Но это – вопрос будущего.
Однако уже сейчас отдельные виды сверхпроводникового оборудования могут значительно улучшить ситуацию в существующих энергосистемах и сетях, увеличив их устойчивость, надежность и пропускную способность. Именно об этом – в материале Павла Елагина.


 

Высокотемпературные сверхпроводниковые трансформаторы
Новое поколение подстанционного оборудования


Павел Елагин, инженер, ООО «Росполь-Электро», г. Санкт-Петербург

Интерес к трансформаторам с использованием сверхпроводимости возник в 1960-х годах при появлении низкотемпературных сверхпроводников, применяемых для обмоток трансформаторов. Многие производители во всем мире, среди которых можно назвать европейские концерны ABB и Alstom, а также K.E.P.C. (Япония) и Westinghouse (США), начали разработки низкотемпературных сверхпроводниковых (НТСП) трансформаторов. За это время были достигнуты значительные успехи. Так, например, можно назвать создание концерном ABB НТСП-трансформатора 330 кВА 6/0,4 кВ со способностью токоограничения, а также разработку японской компанией Kansai опытного образца трехфазного трансформатора 2000 кВА. Однако непреодолимым барьером на пути развития и применения НТСП-трансформаторов являлись огромные по размерам криогенные системы для получения жидкого гелия, которые делали использование таких трансформаторов экономически нецелесообразным.
Открытие высокотемпературных сверхпроводниковых (ВТСП) материалов в 1986 году позволило отказаться от громоздких охлаждающих устройств. И основные разработки по созданию трансформаторов нового поколения ведутся именно в этом направлении.

Особенности высокотемпературной сверхпроводимости

В первую очередь следует отметить, что у сверхпроводников существуют две основные особенности:

  • очень малые потери при большой плотности тока;
  • переход от практически нулевого сопротивления к высокому сопротивлению при превышении током определенного значения (так называемого критического тока).
Сверхпроводящее состояние существует только ниже определенной критической температуры, обычно принимаемой равной температуре кипящего жидкого азота (77К).
Нормальный ток ВТСП-проводника должен иметь значительные соответствующие области сверхпроводимости и быть ниже критического тока. Максимально допустимое повышение тока должно определяться нагрузочной способностью охлаждающего устройства.
Для тока, значительно превышающего критический, потери увеличиваются на порядок. Энергия, выделяемая в проводнике во время этого процесса, называемого режимом ограничения аварийных токов, поглощается при испарении части охлаждающей жидкости.
Все эти свойства ВТСП-материалов позволяют получить трансформатор, значительно превосходящий по всем своим характеристикам традиционно применяемые на сегодняшний день масляные и сухие трансформаторы.

Преимущества ВТСП-трансформаторов
ВТСП-трансформаторы по сравнению с традиционными обладают значительными техническими преимуществами. Попробуем их перечислить:

  • снижение нагрузочных потерь при номинальном токе на 90%, что значительно увеличивает КПД трансформатора;
  • уменьшение веса и габаритов трансформатора до 40%. Следует отметить, что упомянутые достоинства позволяют применять ВТСП-трансформаторы в уже существующих подстанциях без их конструкционных изменений со значительным увеличением мощности. Облегчается и транспортировка трансформаторов;
  • свойства ограничения токов КЗ, что в аварийных режимах защищает электрооборудование сети;
  • значительное уменьшение реактивного сопротивления, что позволяет обеспечить стабилизацию напряжения, не прибегая к его регулированию;
  • большая перегрузочная способность без повреждения изоляции и старения трансформатора;
  • уменьшение уровня шума.
Кроме того, по сравнению с масляными трансформаторами ВТСП-трансформатор пожаробезопасен и экологичен.

Разработки и опытные образцы
Рис.1 В настоящее время существуют три основных проекта по созданию ВТСП-трансформаторов: в Европе, США и Японии. Работа над ними началась примерно в одно и то же время, и в 1997 году все три были реализованы в опытных образцах.
Первым стал трансформатор на напряжение 18,7/0,4 кВ мощностью 630 кВА (рис. 1) производства ABB при участии американской компании ASC (изготовителя ВТСП-ленты для обмоток) и французской электроэнергетической системы Electricite de France (EDF).
Рис.2 На его примере рассмотрим принцип устройства ВТСП-трансформатора (рис. 2). Обмотки погружены в жидкий азот, служащий одновременно и изоляцией, и охлаждающей средой. Сердечник трансформатора работает при температуре окружающей среды, т.к. его охлаждение приведет только к лишним нагрузкам криогенной системы, а не к улучшенным характеристикам. Обмотки термически изолированы от сердечника и окружающей среды с помощью двустенных контейнеров (так называемых криостатов), выполненных из эпоксида, между стенками которых поддерживается вакуум, обеспечиваемый непрерывной работой насоса.
При проведении испытаний потери при номинальном токе составили 337 Вт, а потери холостого хода в сердечнике – 2,1 кВт. Общие тепловые потери равны примерно половине потерь в проводе. После успешных испытаний упомянутые компании подписали договор, по которому каждая из них выделила по 5 миллионов долларов на разработку компанией ASC улучшенного ВТСП-провода. Далее ABB сделает трансформатор 10 МВА, а EDF установит его в своей сети для проведения полноценных испытаний. Дальнейшей целью ставится достижение мощности ВТСП-трансформатора 30 МВА, а конечной – 100 МВА.
Рис.3 Вторым был испытан трансформатор 500 кВА 6600/3300 В (рис. 3) производства Fuji Electric (Япония) с применением ВТСП-лент другой японской компании Sumitomo Electric Corporation. В разработке также участвовали специалисты университета Kyushu.
Потери в сердечнике составили 2,4 кВт, потери при номинальном токе – 115 Вт. Японские разработчики решили пока не создавать ВТСП-трансформатор на большие мощности, а улучшить характеристики уже сделанного, а именно усовершенствовать систему охлаждения и ВТСП-провод для обмотки.
Третьим в том году, но самым большим по мощности, стал трансформатор 1000 кВА полностью американского производства: Waukesha Electric (производитель трансформаторов), IGC Super Power (изготовитель ВТСП-провода) и Energy East (электроэнергетическая компания, конечный потребитель).
После этих испытаний было решено создать трансформатор 30 МВА 138/13,8 кВ, но, так же как и в случае с ABB, с промежуточной фазой в 10 МВА. Для этого правительство выделило 3,8 миллиона долларов, и столько же было вложено частными инвесторами.
Рис.4 Рис.5 В результате в конце 2003 года был создан трансформатор 10 МВА 26,4/4,2 кВ (рис. 4). Но при испытаниях было обнаружено несколько недостатков: в обмотках был выявлен большой уровень частичных разрядов, в криогенной системе происходили утечки, и, кроме того, возникли проблемы с испытанием трансформатора на полное напряжение по высокой стороне. На сегодняшний день эти неполадки устранены, трансформатор установлен на испытательный стенд (рис. 5), и новые испытания намечены уже в ближайшее время.
Рис.6 Сам принцип конструкции трансформатора остался такой же, как и в 1997 году, в чем можно убедиться, сравнив конструкции трансформатора 630 кВА на рис. 2 и 10 МВА на рис. 6.

Будущее ВТСП-трансформаторов
По данным Министерства энергетики США, сделавшего в 1993 году подробный анализ возможного применения ВТСП-трансформаторов мощностью до 30 МВА, затраты (при средней оценке) на весь срок службы при эксплуатации ВТСП-трансформаторов будут наполовину меньше по сравнению с затратами на обслуживание традиционно применяемых трансформаторов. А в результате анализа будущего применения ВТСП-трансформаторов 30–1500 МВА, представленного на конференции во Франции в 1994 году, было выявлено, что затраты будут на 70% меньше.
Многие разработчики ВТСП-проводов и трансформаторов надеются, что к 2010 году, когда во многих странах мира начнет производиться активная замена электрооборудования, отработавшего свой срок службы, резко возрастет спрос именно на ВТСП-трансформаторы.
Однако смогут ли производители добиться обещанных технических и ценовых параметров, покажет только время.

Литература

  1. Лизунов С. Д., Лоханин А. К. Проблемы современного трансформаторостроения в России // Электричество. – 2000. – № 8, 9.
  2. Черноплеков Н. А. Сверхпроводниковые технологии: современное состояние и перспективы практического применения // Вестник РАН. – 2001. – № 4.
  3. Dirks J. A. HTS transformer performance, cost and market evaluation // Pacific Northwest Laboratory Report, 1993, PNL-7318.
  4. Mumford F. J. A techno-economic study of high Tc superconducting power transformers // International Conference on Electrical Machines, 1994.
  5. Larbalestier D., Schwall R. E., Sokolowski R. E. Power Applications of Superconductivity in Japan and Germany // WTEC Panel Report, 1997.
  6. Reis C. T., Mehta S., McConnell B. W., Jones R. H. Development of High Temperature Superconducting Power Transformers // IEEE Power Electronics Society Winter Power Meeting, 2001.
  7. Sissimatos E., Harms G., Oswald B.R. Optimization of high-temperature superconducting power transformers // Applied Superconductivity, 2001, №11.





Очередной номер | Архив | Вопрос-Ответ | Гостевая книга
Подписка | О журнале | Нормы. Стандарты | Проекты. Методики | Форум | Выставки
Тендеры | Книги, CD, сайты | Исследования рынка | Приложение Вопрос-Ответ | Карта сайта




Rambler's Top100 Rambler's Top100

© ЗАО "Новости Электротехники"
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Segmenta Media создание и поддержка сайта 2001-2024