Новости Электротехники 2(128)-3(129) 2021





<  Предыдущая  ]  [  Следующая  >
Журнал №2(38) 2006

ЗАЗЕМЛЕНИЕ ПОДСТАНЦИЙ 110/35/6 КВ


Алевтина Федоровская, технический директор
     О НЕКОТОРЫХ ВОПРОСАХ РАСЧЕТА И СООРУЖЕНИЯ

В «Новостях ЭлектроТехники» № 5(35) 2005 была опубликована статья авторов из Новосибирска Юрия Целебровского и Сергея Нестерова «Заземляющие устройства КТПБ-110/35/6 кВ.

    
Владимир Фишман, главный специалист
Филиал «ЭСП-НН-СЭЩ» группы компаний «Электрощит-ТМ-Самара», г. Нижний Новгород

Требования к проектированию и сооружению», в которой поднимались вопросы оптимизации конструкции заземляющих устройств на подстанциях комплектного типа. Темой для исследований новосибирских авторов послужили нормативные требования к напряжению прикосновения на территории подстанции.
Нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман полностью согласны с актуальностью поднятых вопросов. Однако они отмечают, что требования к заземляющим устройствам на таких подстанциях не ограничиваются только соображениями техники безопасности. Всё возрастающую роль начинают играть вопросы электромагнитной совместимости электрооборудования, устанавливаемого на подстанциях, и, в частности, вопросы защиты от перенапряжений и импульсных помех, в решении которых немаловажную роль играют параметры заземляющего устройства подстанции.

Основой для исследований и предложений ученых из Новосибирска послужили нормативные требования к напряжению прикосновения на территории подстанции (ПС), в частности ГОСТ 12.1.038-82 [1]. Авторы предложили конструкцию двухуровневого заземляющего устройства (ЗУ), которая, по их расчетам, обеспечивает оптимальное распределение напряжений прикосновения на территории ПС, особенно с высоким удельным сопротивлением грунта.
Анализируя данное решение, необходимо прежде всего обратить внимание на некоторые противоречия с требованиями действующих ПУЭ.

О выравнивающей сетке

Пункт 1.7.90 ПУЭ [2] регламентирует, как должна выполняться выравнивающая сетка ЗУ на территории ПС. При этом отмечается, что расстояние между поперечными полосами сетки «рекомендуется принимать увеличивающимся от периферии к центру заземляющей сетки, причем первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5;16,0; 20,0 м.» и т.д.
Принцип увеличения расстояния между поперечными полосами заземляющей сетки от периферии к центру, очевидно, заложен не случайно и преследует цель выравнивания напряжения прикосновения на поверхности земли открытого распредустройства ПС (ОРУ) при протекании тока замыкания на землю. Размеры ячеек заземляющей сетки должны увеличиваться от периферии к центру, т.к. в противном случае напряжение прикосновения на периферии ОРУ будет больше, чем в центре.
Этот принцип в предложении авторов статьи почему-то не нашел отражения. Более того, исходя из рис. 2 и рис. 8 («Новости ЭлектроТехники» № 5(35) 2005, стр. 40–42) создается явное впечатление, что размеры ячеек заземляющей сетки от периферии к центру не увеличиваются, а, наоборот, уменьшаются. Если авторы не считают рекомендации ПУЭ правильными, необходимо обоснование этому.

О внешнем контуре

Внешний «потенциалоснижающий» контур ЗУ, по замыслу авторов, выходит за пределы территории подстанции, что допускается ПУЭ. Однако это неохраняемая территория, и необходимо, по нашему мнению, предусмотреть дополнительные меры безопасности, поскольку непосредственно над полосой внешнего контура ЗУ в момент однофазного короткого замыкания (ОКЗ) могут оказаться дети, животные, люди без спецодежды, а возможно, и без обуви. Для таких случаев нормативы ГОСТ 12.1.038-82 вряд ли применимы. В частности, в ГОСТе указано, что «значения напряжений прикосновения и токов установлены для людей с массой тела от 15 кг» (кстати, нормативное время защитного отключения для животных согласно табл. 1.7.11 ПУЭ меньше, чем для людей – табл. 1.7.1).
Очевидно, что именно стремлением снизить напряжение прикосновения продиктована рекомендация п. 1.7.90 ПУЭ: «внешний контур заземляющего устройства в этом случае (т.е. при выходе ЗУ за пределы ограды подстанции) рекомендуется выполнять в виде многоугольника с тупыми или скругленными углами». Тем не менее в предлагаемой в статье конструкции ЗУ углы прямые. Всё вышеизложенное говорит о том, что внешний заземляющий контур требует больше внимания, чем ему уделено в статье.

О сопротивлении ЗУ

В приведенном в статье примере сопротивление ЗУ ПС 110/35/6 кВ рассчитано по допустимому напряжению прикосновения и составляет 2,88 Ом, что более чем в 5 раз превышает сопротивление, определенное по второму способу – по величине сопротивления растекания (0,5 Ом), и позволяет соответственно сократить размеры ЗУ и расход металла.
В связи с этим авторы статьи призывают выполнять расчеты только по допустимому напряжению прикосновения. Однако существуют некоторые обстоятельства, требующие внимательного рассмотрения. При использовании метода расчета ЗУ по допустимому напряжению прикосновения вывод, что полученные результаты удовлетворяют требованиям ГОСТ 12.1.038-82, можно сделать лишь после тщательного анализа всех возможных режимов работы сети, расчета для этих режимов максимальных и минимальных значений токов ОКЗ в заданной точке с выделением составляющих от системы и потребителей. После этого необходимо проанализировать работу основных и резервных защит ВЛ 110 кВ в разных режимах, поскольку согласно ПУЭ для рабочих мест принимается время действия резервных зашит, а для остальной территории подстанции – время действия основных защит ВЛ 110 кВ.

Специалистам, знакомым со сложившейся в настоящее время практикой проектирования подстанций различными, порой не вполне компетентными организациями (особенно в части анализа режимов работы энергосистем и релейных защит), должно быть понятно, что такая задача для них очень сложна. А значит, неизбежны ошибки, например, в определении действительного времени отключения ОКЗ в различных режимах энергосистемы. При приемке подстанции в эксплуатацию это время, к сожалению, нельзя «замерить», в отличие, например, от измерения сопротивления ЗУ. Поэтому не будет уверенности в выполнении важных требований, касающихся условий безопасности при эксплуатации.
В приведенном в статье примере, судя по небольшой величине тока ОКЗ на ОРУ 110 кВ, питающие линии 110 кВ должны быть весьма длинными. На таких линиях первые быстродействующие ступени защит нулевой последовательности обычно не охватывают всю линию. В этом случае в качестве основной защиты от ОКЗ в конце линии выступают последующие (вторая, третья и др.) ступени защиты, действующие с выдержками времени 0,6 с; 1,1 с , а время действия резервных защит еще больше. Таким периодам времени, согласно таблице ГОСТ 12.1.038-82, соответствуют предельно допустимые напряжения прикосновения: на рабочих местах – 20 В, на остальной территории ПС – 95 В. Это намного меньше, чем данные, приведенные в статье.
В статье авторы сравнивают два варианта заземляющего устройства ПС с сопротивлениями 5,2 Ом и 2,8 Ом, при этом напряжения на ЗУ составляют соответственно 8,4 кВ и 4,6 кВ. Однако на практике для данной ПС при наличии ВЛ 110 и 35 кВ картина будет иной. Чтобы убедиться в этом, необходимо проследить путь тока ОКЗ на ОРУ 110 кВ (рис. 1).

Ток с поврежденной фазы возвращается к источнику не только через заземляющее устройство самой ПС, но и через параллельно включенные грозозащитные тросы ВЛ 110 и 35 кВ и заземляющие устройства опор. Дело в том, что, согласно требованиям п. 4.2.144 ПУЭ, подход каждой ВЛ 110 и 35 кВ к ПС должен защищаться грозозащитным тросом на расстоянии не менее 1 км от ПС. Грозозащитный трос заземляется как на ПС, так и на каждой опоре ВЛ, при этом сопротивление заземлителя каждой опоры должно быть не более 10–20 Ом. Принимая во внимание количество ВЛ 35 кВ (не менее двух на каждую секцию шин) и как минимум одну двухцепную ВЛ 110 кВ, а также количество заземленных опор на участке 1 км = 10 шт, можно подсчитать эквивалентное сопротивление заземления всех опор (сопротивлением троса можно пренебречь):

Очевидно, что это сопротивление на порядок меньше сопротивлений ЗУ ПС, рассчитанных по условиям напряжений прикосновения (5,2 Ом и 2,8 Ом), и таким образом общее сопротивление току ОКЗ становится меньше величины 0,5 Ом, требуемой ПУЭ по условию обеспечения сопротивления ЗУ. В таких случаях расчет по напряжению прикосновения теряет смысл (естественно, если к моменту пуска подстанции ВЛ 35 кВ также будут сооружены, хотя бы частично). Главная задача ЗУ заключается в этих случаях в обеспечении выравнивания потенциала на территории подстанции.

О дополнительных требованиях к ЗУ

Требования к ЗУ на подстанциях напряжением 110/35/6(10) кВ в настоящее время не ограничиваются только обеспечением максимально допустимого напряжения и безопасного напряжения прикосновения.
Массовое внедрение на таких подстанциях микропроцессорных (МП) устройств защиты, автоматики, АСУ ТП и связи выдвинуло новые требования к ЗУ подстанций. Эти требования в общем виде можно сформулировать как обеспечение электромагнитной совместимости (ЭМС) совершенно разного по своим параметрам электрооборудования. С одной стороны, это мощная коммутационная и защитная аппаратура 110 кВ: выключатели, разъединители, разрядники (ОПН), молниеотводы, с другой – построенное на МП базе высокочувствительное электрооборудование защит, автоматики, телемеханики, связи и АСУ ТП. Речь, таким образом, идет об ограничении мощного электромагнитного воздействия электрооборудования первой группы на высокочувствительное оборудование второй группы. По существу, эти требования новосибирским авторам хорошо известны [3], но предлагаемая ими конструкция ЗУ с этих позиций не рассмотрена.
По вопросам защиты вторичных цепей от электромагнитных помех на подстанциях и электростанциях существует нормативный документ – РД 34.20.116-93, выпущенный еще в 1993 г. С тех пор произошли существенные изменения: получило массовое применение такое электрооборудование, как вакуумные выключатели, создающие при определенных условиях коммутационные перенапряжения, новые защитные аппараты – ОПН и чувствительные к воздействиям микропроцессорные устройства. В вышедшую новую, 7-ю редакцию 4-го раздела ПУЭ, а также в «Рекомендации по технологическому проектированию подстанций напряжением 35–750 кВ» включены далеко не все из технических решений, изложенных в РД 34.20.116-93. В связи с этим ощущается необходимость корректировки вышеуказанного документа с учетом проведенных за последние годы исследований.
В подтверждение этого приведем некоторые недостаточно четко сформулированные требования из упомянутых выше документов.
Так, в «Рекомендациях по технологическому проектированию подстанций напряжением 35–750 кВ» указано (п. 5.6): «при замене устройств релейной защиты, автоматики, телемеханики и связи на новые устройства, выполненные на микроэлектронной или микропроцессорной базе и имеющие высокую чувствительность к импульсным помехам, предусматриваются специальные меро-приятия по снижению уровня импульсных помех, в том числе по усилению заземляющего устройства ПС».
Можно по-разному трактовать требование по «усилению заземляющего устройства ПС», хотя очевидно, что речь не идет о его увеличении против существующего. Скорее, наоборот, об уменьшении. Тогда возможность значительного увеличения сопротивления ЗУ подстанции, определяемая при его расчете по методу напряжений прикосновения, требует дополнительного анализа с точки зрения влияния на ЭМС (перенапряжения и помехозащищенность).
Как показали исследования, проведенные ООО «ЭЗОП» [6], импульсное сопротивление ЗУ подстанции току молнии в несколько раз превышает сопротивление ЗУ на частоте 50 Гц. Это объясняется высокочастотным характером тока грозового разряда. Так, при измерениях на одной из подстанций выяснилось, что импульсное сопротивление ЗУ ПС при грозовом разряде составляет 2,88 Ом, тогда как при частоте 50 Гц оно не превышало 0,5 Ом. При этом напряжение в точке присоединения молниеотвода к ЗУ составляло сотни киловольт. Это ещё раз говорит о необходимости осторожного подхода в случаях расчета сопротивления ЗУ по методу напряжений прикосновения.
В Правилах устройства электроустановок (7-е изд., разд. 4, п. 4.2.136) содержится следующее требование: «заземляющие проводники измерительных трансформаторов тока необходимо присоединить к заземляющему устройству РУ в наиболее удаленных от заземления РВ или ОПН местах».
Это требование не конкретно (удаленных насколько?), кроме того, его очень трудно выполнить, поскольку компоновка электрооборудования современных ПС очень плотная, а ПУЭ требуют заземления РВ, ОПН и вторичных обмоток измерительных трансформаторов (ИТ) вблизи места их установки, причем кратчайшим путем. Разнести точки заземления РВ, ОПН и вторичных обмоток ИТ особенно сложно в КРУ, где это оборудование установлено в соседних ячейках. С другой стороны, очевидно, что это требование не лишено оснований, поскольку, как уже говорилось выше, напряжение на ЗУ в точках подключения к нему молниезащитных аппаратов чрезвычайно велико. Дело усугубляется тем, что, в отличие от всех прочих заземляемых проводников, проводники от вторичных обмоток измерительных трансформаторов заземляются в одной точке, а это способствует передаче высокого потенциала на входы микропроцессорных устройств защиты, измерения и учета. Причем применением экранированного кабеля проблема не решается. Следует также упомянуть, что в последние годы вышли несколько ГОСТов, относящихся к области перенапряжений в сетях до 1000 В, а различными фирмами широко рекламируются соответствующие устройства защиты от перенапряжений (УЗИП). В электроустановках с воздушными линиями 380/220 В их применение действительно целесообразно. На ПС 110/35/6(10) кВ также имеются потребители напряжением до 1000 В, причем весьма ответственные, – это системы собственных нужд 380/220 В, системы постоянного или переменного оперативного тока. Однако в них нет ВЛ 0,4 кВ, при этом они находятся в пределах общей системы уравнивания потенциалов и за пределы границ ПС не выходят. Тем не менее, с учетом вышесказанного о переходных процессах в высоковольтных сетях, вызванных токами молнии, и о протекании разрядных токов через ОПН, вопрос о целесообразности применения УЗИП в сетях собственных нужд подстанций требует дополнительного анализа.

Выводы

В тех случаях, когда при расчетах ЗУ ПС по методу напряжения прикосновения рассчитанное сопротивление в несколько раз превышает 0,5 Ом, следует учитывать возможность негативного влияния этого сопротивления на электромагнитную совместимость оборудования (перенапряжения, помехозащищенность и др.).
Конструкция ЗУ на ПС должна отвечать не только требованиям безопасности обслуживания, но также требованиям электромагнитной совместимости электрооборудования.
Необходимо разработать и утвердить (сертифицировать) в соответствующих организациях Минпромэнерго методику расчета импульсных помех на ПС вместе с рекомендациями по минимизации их воздействия на микропроцессорные устройства релейной защиты, автоматики, телемеханики и связи.

Литература

1. ГОСТ 12.1.038-82. Предельно допустимые значения напряжений прикосновения и токов // Система стандартов безопасности труда. Часть 3. – М.: ИПК Издательство стандартов, 1996.
2. Правила устройства электроустановок. Раздел 1.7. – 7-е изд.
3. Целебровский Ю.В. Заземляющие системы промышленных предприятий. Особенности нормирования, проектирования, эксплуатации // Новости ЭлектроТехники. – 2005. – № 4(34).
4. Методические указания по защите вторичных цепей электростанций и подстанций от импульсных помех. РД 34.20.116-93, утвержден Департаментом науки и техники РАО «ЕЭС России», 1993.
5. Рекомендации по технологическому проектированию подстанций напряжением 35–750 кВ. Утверждены приказом Минэнерго № 288 от 30.06.2003.
6. Матвеев М.В. ЭМС цифровой аппаратуры диктует новые требования // Новости ЭлектроТехники. – 2005. – № 1(31).





Очередной номер | Архив | Вопрос-Ответ | Гостевая книга
Подписка | О журнале | Нормы. Стандарты | Проекты. Методики | Форум | Выставки
Тендеры | Книги, CD, сайты | Исследования рынка | Приложение Вопрос-Ответ | Карта сайта




Rambler's Top100 Rambler's Top100

© ЗАО "Новости Электротехники"
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Segmenta Media создание и поддержка сайта 2001-2024