Новости Электротехники 2(128)-3(129) 2021





<  Предыдущая  ]  [  Следующая  >
Журнал №2 (74) 2012 год     

Релейная защита

Стандарт МЭК 61580 позволил создавать подстанции нового поколения – цифровые, которые должны стать элементами умной сети,
а точнее, «интеллектуальной электроэнергетической системы с активно-адаптивной сетью». Внедрение МЭК 61850 дало возможность связать всё технологическое оборудование подстанции единой информационной сетью, по которой передаются не только данные от измерительных устройств к терминалам РЗА, но и сигналы управления.
В данной публикации авторы рассматривают подсистемы релейной защиты, автоматики и коммерческого учета электроэнергии, построенные на базе цифровых систем передачи данных по протоколам, описанным МЭК 61580.

Алексей Аношин,
исполнительный директор
Александр Головин,
технический директор
ООО «ТЕКВЕЛ», г. Москва

ЦИФРОВЫЕ ПОДСТАНЦИИ
Проблемы внедрения устройств РЗиА

МЭК 61850

МЭК 61850 – это глобальный коммуникационный стандарт, сфера действия которого, согласно планам Международной электротехнической комиссии [1], будет расширена за рамки электроэнергетики. Стандарт МЭК 61850 «Коммуникационные сети и системы для систем автоматизации в электроэнергетике» имеет целый ряд глав, в которых описываются 3 протокола передачи данных, а также требования к информационной модели, которая должна быть реализована в устройствах, к языку конфигурирования и процессу инжиниринга систем.
Четкое описание информационной модели устройств является одной из важных особенностей стандарта МЭК 61850, отличающей его от других стандартов информационного обмена в электроэнергетике. В соответствии с требованиями каждое физическое устройство должно содержать в себе логический сервер, в рамках которого заложена иерархическая модель, включающая одно или несколько логических устройств, в которых содержатся логические узлы. Каждый логический узел в свою очередь включает в себя элементы и атрибуты данных (рис. 1).

Рис. 1. Иерархическая информационная модель

Логические узлы – это стандартизованное описание коммуникационного интерфейса различных функций устройств. Например, функции МТЗ в релейной защите (РЗА) соответствует логический узел PTOC. В логическом узле содержатся различные элементы данных, например элемент str, обеспечивающий сигнализацию пуска защиты. Атрибутами элемента str будут являться такие поля, как general (общий пуск), phsA (пуск по фазе А) и другие.

Как уже было сказано, стандарт МЭК 61850 предлагает использование трех протоколов передачи данных (рис. 2):

  • MMS (Manufacturing Message Specification – стандарт ISO/IEC 9506) – протокол передачи данных реального времени и команд диспетчерского управления между сетевыми устройствами и/или программными приложениями;
  • GOOSE (Generic Object Oriented Substation Event – стандарт МЭК 61850-8-1) – протокол передачи данных о событиях на подстанции. Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами;
  • SV (Sampled Values – стандарт МЭК 61850-9-2) – протокол передачи оцифрованных мгновенных значений от измерительных трансформаторов тока и напряжения (ТТ и ТН). Данный протокол позволяет заменить цепи переменного тока, соединяющие устройства РЗА с ТТ и ТН.

Рис. 2. Протоколы стандарта МЭК 61850

В первую очередь производители реализовали поддержку протоколов MMS и GOOSE. Только спустя 10 лет с момента опубликования первого релиза стандарта производители вплотную подошли к реализации поддержки протокола SV. Импульсом для развития этого протокола послужила подготовка руководящих указаний по реализации протокола МЭК 61850-9-2 (обычно именуемых МЭК 61850-9-2 LE от анг­лийского Light Edition – облегченная версия). Руководящие указания четко определили параметры реализации протокола, критически важные для обеспечения совместимости устройств, в частности, частоту дискретизации, состав информационного пакета и т.п.

Некоторые параметры, определенные спецификацией 9-2 LE, вызывали недовольство производителей. Например, выбранная частота дискретизации 80 выборок за период не совпадала с внутренней частотой обработки сигналов в устройствах РЗА российских и многих зарубежных (Япония, Франция) производителей. Это вызвало определенное запаздывание в разработке устройств релейной защиты с поддержкой протокола SV, однако сейчас можно говорить о том, что данная проблема решена, и опытные образцы устройств с поддержкой протокола МЭК 61850-9-2 представили почти все крупнейшие производители РЗА.

Таким образом, одна из главных задач на пути построения цифровых подстанций, а именно создание необходимого комплекса вторичного оборудования с поддержкой цифровых протоколов, на сегодняшний день решена. Тем не менее остается еще ряд организационных и технических вопросов, без решения которых переход на «цифру» во вторичных системах осуществлен быть не может. Перечислим их:

  • функциональная совместимость устройств различного назначения и различных производителей;
  • надежность передачи данных по цифровым сетям;
  • необходимая скорость передачи данных;
  • адекватная технологиям нормативная база, в первую очередь в области метрологии;
  • решение вопросов проектирования цифровых подстанций.

Рассмотрим каждый из этих аспектов подробнее.

ОБЕСПЕЧЕНИЕ СОВМЕСТИМОСТИ

Совместимость устройств различных производителей по цифровым протоколам передачи данных – это один из базовых принципов МЭК 61850.

На ранней стадии развития стандарта реализуемость данного принципа ставилась под сомнение. Основой для этого стала относительно сырая реализация протоколов в первых версиях устройств: каждый производитель спешил декларировать, что имеет устройство с поддержкой МЭК 61850. Для испытания таких устройств был создан целый ряд лабораторий по исследованию функциональной совместимости, которые работают за рубежом и в России.

Результаты испытаний в лабораториях, а также самостоятельные испытания производителей показывают, что проблема обеспечения совместимости по протоколам GOOSE, MMS и SV (в редакции LE) на сегодняшний день уже не стоит [2].

Отдельной задачей здесь является обеспечение совместимости по языку конфигурирования в соответствии с МЭК 61850-6. Указанная глава стандарта описывает язык конфигурирования Substation Configuration Language (SCL), основанный на языке разметки XML и предназначенный для создания конфигурационных файлов устройств.

Различают следующие виды SCL-файлов:
ICD – файл описания возможностей устройства;
SSD – файл описания спецификации подстанции;
SCD – файл описания конфигурации подстанции;
CID – файл описания конфигурации устройства.

Процедура конфигурирования устройств, описанная стандартом, предполагает следующие шаги (рис. 3):

  • создание файла спецификации SSD с использованием специализированного программного обеспечения для проектирования;
  • при помощи программного обеспечения, поставляемого вместе с устройствами РЗА, из устройств извлекаются файлы описания возможностей – ICD;
  • интеграция в файл SSD файлов описания возможностей устройств ICD и конфигурирование коммуникационных связей между устройствами. Данная операция также выполняется в специализированном ПО для проектирования. В результате будет получен файл описания конфигурации подстанции – SCD;
  • импорт файла SCD в ПО для конфигурирования устройств и получение отдельных файлов конфигураций для каждого из устройств – CID – с последующей загрузкой этих файлов в устройства.

Рис. 3. Процедура конфигурирования по МЭК 61850

Во время наладки устройства может потребоваться частичное изменение конфигурации. В таких случаях используется еще один тип файла – IID. Этот файл предназначен для внесения изменений в файл описания конфигурации подстанции SCD. После изменения файла SCD все конфигурации в устройствах должны быть обновлены.

На сегодняшний день стыковка программного обеспечения производителей устройств и ПО для системного конфигурирования обеспечена не в полной мере. В лаборатории по исследованию функциональной совместимости устройств, работающих по протоколам стандарта МЭК 61850, удалось использовать ПО для проектирования Atlan для конфигурирования устройства MiCOM P141, SEL-451 и SIPROTEC 7SJ80. В ПО некоторых производителей невозможно импортировать готовый проект в формате SCD. Вместо этого приходится настраивать конфигурацию для каждого устройства по отдельности.

В целом этот недостаток не мешает организовать связь по протоколам GOOSE, MMS или SV между устройствами, в том числе и разных производителей устройств РЗА, однако усложняет процесс проектирования и наладки и повышает требования к квалификации персонала наладочных организаций.

НАДЕЖНОСТЬ СЕТЕЙ СВЯЗИ

Особенностью вторичных систем, построенных по стандарту МЭК 61850, является реализация большинства функций защиты и автоматики с использованием информационной сети. Соответственно надежность системы РЗА будет связана с надежностью подсистемы передачи данных.

Стандарт МЭК 61850 предлагает целый комплекс решений, направленных на повышение надежности передачи данных. Этот комплекс включает в себя как средства, описанные самим стандартом, так и стандартные средства коммуникационных протоколов Ethernet, к которым относится физическое резервирование информационной инфраструктуры в сочетании с использованием протоколов резервирования.

В настоящее время существует три основных протокола резервирования: RSTP, PRP, HSR.

Выбор протокола и его параметров будет определяться топологией информационной сети и требуемыми характеристиками в части допустимого времени перебоя передачи данных.

Методики обеспечения надежности, описанные стандартом МЭК 61850 для протоколов MMS, GOOSE, SV, будут различны по причине существенных различий между указанными протоколами.

Протокол MMS представляет собой стандартный клиент-серверный протокол поверх стека TCP/IP. Для обеспечения передачи данных в нем используется механизм запросов и ответов (рис. 4). Таким образом, при неудачной попытке передачи данных устройство сможет сформировать соответствующий отчет.

Рис. 4. Механизм передачи данных по протоколу MMS.

Протокол GOOSE осуществляет передачу данных по технологии «издатель–подписчик» без подтверждения приема данных. Обеспечение гарантированной доставки сообщений в данном протоколе осуществляется путем многократного по-вторения передаваемого сообщения с минимальной выдержкой времени (микросекунды).

С целью диагностики канала связи даже при отсутствии изменений передаваемых сигналов, устройство-издатель периодически отправляет посылку с этими данными. В случае повреждения канала связи устройство-подписчик не получит через заданный интервал посылку и сможет выдать оповещение о неполадках в канале связи.

На рис. 5 проиллюстрирован механизм передачи данных по протоколу GOOSE, где Т0 – интервал в нормальном режиме, (Т0) – интервал от передачи последнего сообщения до сообщения после изменения данных в пакете GOOSE-сообщения, Т1–Т4 – изменяющийся интервал между пакетами GOOSE-сообщений от минимального до номинального.

Рис. 5. Изменение интервала времени передачи пакетов GOOSE-сообщений

Протокол SV, так же как и GOOSE, является протоколом типа «издатель–подписчик». Данные по протоколу SV передаются постоянным потоком так, что устройство-подписчик может обнаружить повреждение канала связи по отсутствию данных.

Помимо диагностики канала связи, данные по протоколам GOOSE и SV снабжаются метками качества. Метка качества содержит несколько полей, каждое из которых предназначено для передачи данных о состоянии устройства, передающего данные, включая сведения о его работоспособности, точности и т.п.

Реализация описанных принципов в системах, построенных по стандарту МЭК 61850, позволяет мгновенно выявлять повреждения элементов сетевой инфраструктуры и устройств РЗА и обеспечивать быструю реакцию на них.

Тем не менее для сохранения работоспособного состояния системы и обеспечения бесперебойного выполнения критически важных функций требуется правильно выбрать структуру системы, предусмотреть, где это требуется, структурное резервирование элементов и наладить протоколы резервирования сетевых устройств. Эти вопросы лежат вне рамок стандарта МЭК 61850 и должны быть проработаны на национальном уровне. В силу комплексности рассматриваемого вопроса представляется целесообразной разработка руководящих указаний, дающих рекомендации по выбору топологии информационной сети и принципов резервирования применительно к типовым схемам распределительных устройств, принятым в России.

СКОРОСТЬ ПЕРЕДАЧИ ДАННЫХ

Скорость передачи данных по информационной сети цифровой подстанции, наряду с надежностью, является важнейшим параметром. Время доставки данных для важных сигналов (например, пуск или срабатывание защиты, команда отключения выключателя и т.п.) будет определять суммарное время ликвидации ненормальных режимов и должно быть минимизировано.

Действующая редакция МЭК 61850-5 нормирует допустимое время передачи сигналов (табл. 1).

Табл. 1. Нормированное время передачи сигналов

Тип сигналаМаксимальное время передачи, мс
Сигнал отключения, блокировки3
Снятие блокировки, изменение состояния10
Быстрые автоматические взаимодействия20
Медленные автоматические взаимодействия100
Команды оператора500
Регистрация событий, сигнализация1000
Файлы, журналы событий> 1000

Из рассмотренных выше протоколов критично время передачи пакетов только для GOOSE и SV. Стандартом МЭК 61850 для указанных протоколов предусмотрен ряд механизмов, повышающих их приоритет по сравнению со всем остальным трафиком в информационной сети. Это означает, что загрузка аварийных осциллограмм с одного из устройств релейной защиты по протоколу MMS или FTP не помешает быстрому прохождению пакета с GOOSE-сообщением. В связи с этим при проектировании информационной сети системы автоматизации цифровой подстанции весь остальной трафик может быть оставлен за рамками рассмотрения.

GOOSE-сообщения, несмотря на сравнительно небольшой объем пакета, могут создавать достаточно большую нагрузку на сеть в момент изменения данных в передаваемом GOOSE-сообщении (когда с минимальной выдержкой времени повторно передается одно и то же сообщение). В российской практике построения подстанций с использованием протокола GOOSE был опыт проведения так называемых «штормовых» испытаний, когда серийно проверялось время доставки сообщения при одновременном срабатывании большого количества устройств РЗА.

Очевидно, что проведение таких испытаний при создании цифровых подстанций сложно реализовать. Однако вполне возможно проводить моделирование всех процессов в информационной сети проектируемой подстанции с использованием специализированного программного обеспечения.

При этом целесообразно разделить эту работу на следующие этапы:

  1. Разработка принципиальной схемы передачи данных между логическими узлами и физическими устройствами при выполнении различных функций.
  2. Моделирование логических функций в различных режимах работы ПС с регистрацией одновременно передающихся сигналов.
  3. Моделирование информационной нагрузки в сети при выполнении различных функций по результатам предыдущего этапа.

Моделирование информационной нагрузки, создаваемой протоколом МЭК 61850-9-2, является более простой задачей в силу того, что данные по указанному протоколу передаются по детерминированному закону.

Тем не менее при проектировании здесь следует учитывать различные режимы работы самой сети, например случаи выхода из строя одного из сегментов.

По своей структуре информационные сети подстанций являются не самыми сложными, и их моделирование может быть произведено достаточно точно. Стандарт МЭК 61850 при этом предоставляет большой набор инструментов, предназначенных для повышения приоритета отдельных сообщений над другими, что обеспечивает сокращение времени их доставки.

Разработка руководящих указаний в данной области на сегодняшний день нецелесообразна. Это в первую очередь обусловлено отсутствием полноценной практики внедрения шины процесса по протоколу МЭК 61850-9-2, а также серьезными различиями в характеристиках работы оборудования.

Следует отметить важность серьезной проработки проектов цифровых подстанций в этой части, поскольку проведение лишь поверхностного анализа может привести либо к неудовлетворительным результатам в части производительности системы, либо к серьезному завышению стоимости оборудования, что сделает цифровые подстанции неконкурентоспособными.

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Реализация системы коммерческого учета на базе шины процесса по протоколу МЭК 61850-9-2 – нетривиальная задача с метрологической точки зрения. Прибор учета с цифровым интерфейсом при этом становится лишь компьютером, выполняющим функции умножения и сложения. Однако требования по точности должны предъявляться к аналого-цифровому преобразователю, причем вне зависимости от того, является ли этот преобразователь первичным (цифровой или оптический трансформатор тока) или вторичным (устройство сопряжения – merging unit).

Работа в данной области должна включать в себя создание методики метрологической поверки измерительных преобразователей с интерфейсом МЭК 61580-9-2 и создание эталонных измерительных преобразователей с цифровым интерфейсом. На следующем этапе должен быть проработан вопрос защиты шины процесса от несанкционированного доступа. Эти задачи являются важнейшими на пути создания легитимной системы коммерческого учета на базе шины процесса по МЭК 61850-9-2.

ПРОЕКТИРОВАНИЕ И НАЛАДКА

Внедрение цифровых протоколов существенно изменяет процедуру наладки. Если ранее основная работа здесь заключалась в прокладке кабелей и их стыковке, то сейчас часть этой работы выполняется еще на этапе проектирования при конфигурировании системы по МЭК 61850 в соответствии с процедурой, описанной выше. При этом в случае выявления каких-то ошибок на этапе наладки персонал наладочной организации должен обладать достаточной компетенцией для внесения изменений в файлы конфигурации МЭК 61850. В связи с этим фактически работа проектировщика и наладчика совмещаются.

Проектная документация на цифровую подстанцию будет состоять из двух частей: проектной документации в классическом представлении и файлов конфигурации в формате файлов SCL.

Проектная документация (бумажная версия) будет включать в себя:

  • проект строительной части;
  • электрические схемы первичного оборудования;
  • электрические схемы вторичных цепей;
  • кабельные журналы;
  • уставки РЗА и другие разделы.

Конфигурация протоколов передачи данных по МЭК 61850 должна включать в себя только файл описания подстанции – SCD.

На практике для небольшого проекта подстанции с 20 присоединениями файл SCD представляет собой текстовый документ объемом более 1500 листов. Чтение и редактирование этого документа крайне затруднены (рис. 6), в связи с чем провести проверку и выявить источник возможной ошибки практически невозможно. Поэтому при разработке проектов цифровых подстанций в части передачи данных по МЭК 61580 должны быть использованы специализированные САПР с возможностью полного документирования всех коммуникаций по МЭК 61850 в графическом виде с указанием на чертеже идентификаторов логических узлов, наборов данных, GOOSE-сообщений и т.п.

Рис. 6. Пример SCD-файла

ВЫВОДЫ

В настоящее время уже решен большой комплекс вопросов, стоявших на пути внедрения цифровых подстанций. К таким вопросам можно отнести:

  1. Создание полного комплекса вторичного оборудования с поддержкой всех протоколов, описанных стандартом МЭК 61850.
  2. Обеспечение совместимости оборудования по протоколам стандарта, подтвержденное большим количеством успешных испытаний.

Такие результаты уже сегодня позволяют реализовывать пилотные проекты цифровых подстанций и накапливать опыт проектирования, монтажа, наладки и эксплуатации.

Для серийной реализации проектов цифровых подстанций должна быть создана нормативная база, обеспечивающая легитимность принимаемых в рамках проектов решений, а также приняты руководящие указания по проектированию и наладке таких объектов.

Состав первоочередных работ в этой области должен включать разработку:

  • руководящих указаний по обеспечению надежности передачи данных в рамках цифровых подстанций;
  • методик моделирования информационной сети цифровых подстанций для оценки информационной нагрузки по протоколам МЭК 61850;
  • нормативной базы, создание эталонов и методик поверки в части метрологических характеристик аналого-цифровых преобразователей с цифровым интерфейсом по протоколу МЭК 61850;
  • требований к составу и содержанию проектной документации на цифровые подстанции в части передачи данных по протоколам стандарта МЭК 61850.

Реализация вышеуказанных шагов позволит создать не только создать нормативную базу для принимаемых в рамках решений проектов, но и крепкую основу для повышения экономической эффективности проектов цифровых подстанций.

ЛИТЕРАТУРА

  1. IEC Smart Grid Standardization Roadmap. Ed. 1.0 - 2009-12.
  2. Реестр совместимых устройств. http://мэк61850.рф/совместимость
  3. Тазин В.О., Головин А.В., Аношин А.О. Инжиниринг систем автоматизации цифровых подстанций // Релейщик. 2012. № 1.

 






Очередной номер | Архив | Вопрос-Ответ | Гостевая книга
Подписка | О журнале | Нормы. Стандарты | Проекты. Методики | Форум | Выставки
Тендеры | Книги, CD, сайты | Исследования рынка | Приложение Вопрос-Ответ | Карта сайта




Rambler's Top100 Rambler's Top100

© ЗАО "Новости Электротехники"
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Segmenta Media создание и поддержка сайта 2001-2024