Релейная защита
В компенсированной сети при однофазных замыканиях на землю (ОЗЗ) дугогасящий реактор при точной настройке компенсации создает в контуре нулевой последовательности индуктивную составляющую тока, равную емкостной. При этом ток, протекающий через трансформатор тока нулевой последовательности, оказывается недостаточным для действия защиты от ОЗЗ.
Специалисты из Украины предлагают практичное, на их взгляд, решение задачи построения селективной защиты от ОЗЗ.
ЗАЩИТЫ ОТ ОЗЗ В СЕТЯХ 6–35 кВ
Применение
низковольтных резисторов
для ограничения перенапряжений
Альфред Манилов,
Дмитрий Мельник, инженеры, ООО «УК «Метрополия»
Андрей Барна, инженер,
ПАО «ПТИ «Киеворгстрой»
г. Киев, Украина Для обеспечения чувствительности защиты от ОЗЗ в странах Европы широко применяются дугогасящие реакторы (ДГР) типа ASRC с шунтирующим резистором RS, который при ОЗЗ автоматически подключается через контактор во вторичную силовую обмотку ДГР напряжением 500 В [1].
Режим заземления нейтрали через дугогасящий реактор с шунтирующим резистором (ШР) позволяет реализовать селективную и чувствительную защиту от ОЗЗ с использованием простых токовых реле, ток срабатывания которых отстраивается от максимального собственного емкостного тока присоединений.
Кратковременное подключение ШР при ОЗЗ создает активный ток, контур протекания которого охватывает только поврежденное присоединение. Величина этого тока выбирается по условию обеспечения чувствительности защиты от ОЗЗ.
Однако действие защиты от ОЗЗ зависит от действия автоматики подключения ШР к вторичной обмотке ДГР. Отказ этой автоматики может привести к серьезным последствиям для электроустановок, которые подлежат обязательному отключению при ОЗЗ.
Для исключения зависимости работы защиты от действия автоматики, а также для ограничения перенапряжений представляется целесообразным постоянное включение низковольт-ного резистора во вторичную обмотку ДГР.
РАСЧЕТЫ СОПРОТИВЛЕНИЙ
При комбинированном заземлении нейтрали сопротивление высоковольтного резистора определяется из выражения [2]:
, (1)
где UВН – линейное напряжение сети;
ΔI – ток расстройки компенсации, не превышающий допустимый (ΔI = 5 А).
Широкое применение получили постоянно включенные высокоомные и низкоомные резисторы высокого напряжения. Однако такие резисторы имеют значительные габариты, их достаточно сложно устанавливать и монтировать, да и стоимость их довольно высока.
Чтобы избежать этих недостатков в сетях с комбинированным заземлением нейтрали, представляется целесообразным подключить ко вторичной обмотке ДГР низковольтные резисторы.
Резистор RN1 (рис. 1) предназначается для обеспечения чувствительности токовой ненаправленной защиты от ОЗЗ. Резистор RN2 в нормальном режиме зашунтирован контактором К. Величина сопротивления, образованного последовательно соединенными резисторами RN1 и RN2, после дешунтирования RN2 ограничивает перенапряжение до величины 2Uфmax и ток ОЗЗ до величины не более 10 А [3].
Рис. 1. Схема заземления нейтрали и дешунтирования резистора RN2 при ОЗЗ
Сопротивление низковольтного резистора RN определяется по выражению:
, (2)
где KДГР – коэффициент трансформации ДГР.
Сопротивление резистора RN1 определяют из условия обеспечения чувствительности защиты от ОЗЗ:
, (3)
где KЗ – коэффициент запаса;
KЧmin – минимальный коэффициент чувствительности;
IСЗmax – максимальный ток срабатывания ненаправленной токовой защиты от ОЗЗ, отстроенной от собственного емкостного тока присоединения.
Сопротивление резистора RN2 определяется по выражению:
RN2 = RN – RN1 . (4)
Применение резисторов RN1 и RN2 целесообразно не только при действии защит от ОЗЗ на сигнал, но и для ограничения перенапряжений при действии защит на отключение поврежденного присоединения, так как сеть при дуговом ОЗЗ испытывает перенапряжения. Из-за этого повышается вероятность перехода однофазного замыкания на землю в двойное замыкание (ДЗЗ) и многоместное замыкание (МЗЗ) до отключения ОЗЗ.
Для исключения необходимости установки резистора RN1 и выполнения схемы автоматики дешунтирования возможно применение устройств защиты с обратнозависимой временной характеристикой, действующих от токов непромышленной частоты.
Известно, что при возникновении ОЗЗ наибольший ток гармоник при числе присоединений больше двух проходит на повреждённом присоединении, в то время как на остальных присоединениях проходит ток, определяемый собственными проводимостями. Поскольку в поврежденном присоединении протекает наибольший ток, то оно отключается с наименьшей выдержкой времени согласно выбранной обратнозависимой времятоковой характеристике срабатывания. Применение на всех присоединениях терминалов с единой обратнозависимой временной характеристикой, действующих от тока промышленной частоты или от тока непромышленной частоты, с минимальным током срабатывания присоединения группы даст возможность обеспечить селективность защит и существенно повысить ее чувствительность. Применение на всех присоединениях, которых должно быть больше двух, терминалов с единой обратнозависимой характеристикой с минимальным током срабатывания присоединения группы даст возможность в большинстве случаев обеспечить селективность и чувствительность защиты от ОЗЗ.
Условия селективности несрабатывания при внешних ОЗЗ и устойчивости срабатывания при внутренних повреждениях для устройств абсолютного замера высших гармоник обеспечиваются в основном на крупных подстанциях и электростанциях с большим числом присоединений. Область применения централизованных токовых устройств относительного замера значительно шире и в основном ограничивается погрешностями кабельных ТТНП.
Предварительно на всех устройствах защиты устанавливается одинаковая уставка срабатывания по току, величина которой больше минимального собственного емкостного тока непромышленной частоты присоединения.
При ОЗЗ через поврежденное присоединение протекает суммарный емкостный ток непромышленной частоты секции. Так как в поврежденном присоединении этот ток больше, чем в неповрежденных, его защита срабатывает раньше. После срабатывания защиты произойдет возврат защит на остальных присоединениях.
ФУНКЦИОНИРОВАНИЕ СХЕМЫ ЗАЩИТЫ
Схема работает следующим образом. При ОЗЗ, например в точке К1, срабатывают реле KA1 защиты от ОЗЗ с действием на сигнал с выдержкой времени реле KT2 или на отключение присоединения.
Через 0,2–0,5 с срабатывает реле времени KT3 и подает питание на реле KL1, размыкающий контакт которого отключает контактор K, шунтирующий резистор RN2. Сеть переходит в режим с сопротивлением RN. При этом ток ОЗЗ уменьшается и не превышает длительно допустимого значения.
В случае, если дешунтирование не произошло по причине отказа автоматики, предусматривается отключение поврежденного присоединения с выдержкой времени реле KT1.
После устранения однофазного замыкания на землю токовое реле KA размыкает контакты в цепи реле KT3. Реле KT3 разрывает цепь обмотки KL1, контакты которого замыкают цепь контактора К. Резистор RN2 шунтируется, схема приходит в исходное состояние.
ПРИМЕР ВЫБОРА РЕЗИСТОРОВ>
Исходные данные для расчета:
Uвн = 10000 В, Uнн = 500 В, IСЗmax =10 А, ΔIc = 5 А; KЧmin =
= 1,25; КЗ = 1,1, КДГР = 11,56.
Результаты расчета по (1–4):
RN= 8,65 Ом. Принимаем RN = 8 Ом;
RN1= 3,14 Ом. Принимаем RN1 = 3 Ом;
RN2= 5 Ом.
Эффективность подключения низковольтных резисторов во вторичную обмотку ДГР с точки зрения значений токов нулевой последовательности и ограничения перенапряжений при ОЗЗ подтверждается результатами математического моделирования переходных процессов (рис. 2, 3), которые совпали с результатами моделирования при использовании высоковольтного резистора (рис. 2). Перенапряжения при ОЗЗ ограничиваются величиной не более двухкратной амплитуды фазного напряжения.
Рис. 2. Графики напряжения на стороне НН понижающей ПС 110/10 кВ; а) резистор в нейтрали заземляющего трансформатора, б) резистор во вторичной обмотке дугогасящего реактора
а)
б)
Рис. 3. Графики тока нулевой последовательности в поврежденной кабельной линии
Резисторы с резистивными элементами напряжением до 660 В уже нашли применение в карьерных сетях [4].
ВЫВОД
Для повышения надежности работы сетей напряжением 6–35 кВ целесообразно подключение низковольтных резисторов к вторичной обмотке ДГР. Это позволяет использовать более простые в исполнении и дешевые резисторы вместо дорого-стоящих высоковольтных. Применение резисторов позволяет ограничить перенапряжения до уровня 2UФmax и обеспечить чувствительность защит от ОЗЗ.
ЛИТЕРАТУРА
- Титенков С.С., Пугачев А.А. Режимы заземления нейтрали в сетях 6–35 кВ и организация релейной защиты от однофазных замыканий на землю // Энергоэксперт. 2010. № 2.
- Манилов А.М., Барна А.А. ОЗЗ в сетях 6–10 кВ с комбинированным заземлением нейтрали. Способ обеспечения чувствительности защит // Новости ЭлектроТехники. 2012. № 6(78).
- Евдокунин Г.А., Корепанов А.А. Выбор способа заземления нейтрали в сетях 6–10 кВ // Электричество. 1998. № 12.
- Сивокобыленко В.Ф., Лебедев В.К., Ковязин А.В., Сердюков Р.П. и др. Повышение надежности работы карьерных сетей при однофазных замыканиях на землю: сб. научн. тр.
ДонГТУ. Серия: электротехника и энергетика. Выпуск 9(158). Донецк, 2009.
|